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Fig. 2. Graphical solution of dispersion relation for cyclotron ,modes in
vicinity of u =wh. The value of P. is fixed.

Furthermore, in the vicinity of ~ =OW, (8) can be cast in the fol-

lowing form:
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where 72 is given by (5). Note that the left member of (12) is a f unc-

tion of B, alone, say FI (BJ, when the geometry of the guide and the

filling material are prescribed. Therefm-e we have
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Hence,
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since dFJd,b’, is finite. It follows that the group velocity at cutoff

points is zero.

From (11 ) and (14) it is then recognized that the correct Brillouin

diagram in the vicinity of ~ =CW is the one shown in Fig. 1.

2) For o-~, and a <@k, one obtains from (9)

[ 1
Fz.(6.)T dW2–C02— ——=cot<d –Lo’4 F&)

where

(15)

The existence of an infinite number of cyclotron modes which

cluster at u = w comes out in a natural way from the graphical

solution of (1.5), as shown in Fig. 2.

From (1 S), for co-~ and D, =0 the cutoff points for the higher

order cyclotron modes are easily obtained:

where vn is a large integer.
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Tunable Frequency Range and Mismatch Adjustment

for Comb-Line Bandpass Filters

GEORGE D. O’CLOCK, JR.

Absfract—S-band comb-line filters can be tuned over a frequency

range of approximately 200 percent of the design frequency. A simple
technique is also described that compensates for impedance match

and coupling deficiencies associated with the filter.

I. INTRODUCTION

Many communication systems require narrow-band filters with

center frequencies that are within an octave of one another. There-

fore, it would be economical to utilize one filter design that could be

tuned over the desired range of center frequencies rather than design

individual filters for each center frequency.

Comb-line filters [1], [2] possess the ability to be tuned over a

wide range of frequencies without suffering significant degradation in

performance. The filter’s frequency range is a function of the amount

of capacitance adjustment between each resonator post and tuning

screw.

II. FILTER BANDWIDTH VARIATIONS OVER TUNING RANGE

Jones [3] describes a method of designing comb-line filters which

exhibit no appreciable change in bandwidth while being tuned over

a 2:1 frequency range. In his paper Jones states, “For minimum

variation in passband width as the filter is tuned, the electrical

length of the lines (filter resonator posts) should be 58° at the center

of the tuning range. ” Jones states further, “A bandwidth variation

of 14 percent over a 2:1 tuning range can be expected. ”

Fig. 1. Five-pole S-band comb-line filter (with transformer post tuning element.).

III. COMPENSATION FOR MISMATCH AND OVER-COUPLING

Although the comb-line filter center frequency is variable, it

is often impossible to eliminate excess ripple by resonator post tuning

alone. Much of the excess ripple can be attributed to overcoupling
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Fig. 2. Variation of l-dB and 30-dB bandwidth versus frequency for a
five-Pole comb-line filter with resonator posts cut for fo.

and/or mismatch. Experience with comb-line filters at .S and C

bands indicates that the excess ripple can be significantly reduced by

introducing a tuning element at a position along a certain length

directly over each transformer post. The two tuning elements are

shown at each end of the comb-line filter in Fig. 1.

If mismatch and overcoupling are not a problem, the tuning

elements and the input/output transformer posts can be eliminated

resulting in a considerable filter size reduction.

IV. EXPERIMENTAL RESULTS

The five-pole comb-line filter shown in Fig. 1 was designed for a

center frequency of 1.6 GHz, a 5-percent l-dB bandwidth, and a 12-

percent 30-dB bandwidth (Fig. 2).

The data shown in Fig. 2 indicate that S-band comb-line filters,

with resonator posts designed for a frequency .fo, can be tuned to

frequencies of 0.70 .fo to 2 fO with no serious degradation in either

bandwidth or skirt selectivity.

Fig. 2 shows the variation in l-dB and 30-dEl bandwidths for a

five-pole comb-line filter tuned over a wide frequency range. The

insertion loss increase (as the comb-line filter is tuned from 0.7 ~0 to

2 j,) also appears to be less than 0.3 dB at .S band. The l-dB band-

width variations over a 2:1 range of frequency are approximately 30

percent for resonator post electrical lengths of 45° and 20 percent

for resonator post electrical lengths of 53°. This agrees closely with

the data presented in Jones [3].

In addition, by adj usting the transformer post tuning elements the

ripple due to nonideal coupling or mismatch conditions at the filter-

load interface can be reduced significantly. A voltage stauding-wave

ratio of 3:1 at .S band was reduced to 1.4:1 by this method.

Although the optimum position for the transformer post tuning

element was not determined, excellent results were obtained by

placing the element from 0.06 to 0.09 x up from the base of the trans-

former post.

V. CONCLUSIONS

The wide range of frequency aclj ustment inherent with comb-line

filters is described along with a simple technique to reduce the effects

of mismatch or coupling deficiencies. The ease of obtaining good

matching, bandwidth control, and tunability indicates that one

comb-line filter design can satisfy the performance requirements of a

wide range of frequencies.
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